Sure Independence Screening

نویسنده

  • Jinchi Lv
چکیده

Big data is ubiquitous in various fields of sciences, engineering, medicine, social sciences, and humanities. It is often accompanied by a large number of variables and features. While adding much greater flexibility to modeling with enriched feature space, ultra-high dimensional data analysis poses fundamental challenges to scalable learning and inference with good statistical efficiency. Sure independence screening is a simple and effective method to this endeavor. This framework of two-scale statistical learning, consisting of large-scale screening followed by moderate-scale variable selection introduced in Fan and Lv (2008), has been extensively investigated and extended to various model settings ranging from parametric to semiparametric and nonparametric for regression, classification, and survival analysis. This article provides an overview on the developments of sure independence screening over the past decade. These developments demonstrate the wide applicability of the sure independence screening based learning and inference for big data analysis with desired scalability and theoretical guarantees.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonparametric Independence Screening in Sparse Ultra-High Dimensional Additive Models.

A variable screening procedure via correlation learning was proposed in Fan and Lv (2008) to reduce dimensionality in sparse ultra-high dimensional models. Even when the true model is linear, the marginal regression can be highly nonlinear. To address this issue, we further extend the correlation learning to marginal nonparametric learning. Our nonparametric independence screening is called NIS...

متن کامل

Feature Screening via Distance Correlation Learning.

This paper is concerned with screening features in ultrahigh dimensional data analysis, which has become increasingly important in diverse scientific fields. We develop a sure independence screening procedure based on the distance correlation (DC-SIS, for short). The DC-SIS can be implemented as easily as the sure independence screening procedure based on the Pearson correlation (SIS, for short...

متن کامل

SURE INDEPENDENCE SCREENING IN GENERALIZED LINEAR MODELS WITH NP-DIMENSIONALITY∗ By

Princeton University and Colorado State University Ultrahigh dimensional variable selection plays an increasingly important role in contemporary scientific discoveries and statistical research. Among others, Fan and Lv (2008) propose an independent screening framework by ranking the marginal correlations. They showed that the correlation ranking procedure possesses a sure independence screening...

متن کامل

Sure Independence Screening in Generalized Linear Models with Np-dimensionality1 By

Ultrahigh-dimensional variable selection plays an increasingly important role in contemporary scientific discoveries and statistical research. Among others, Fan and Lv [J. R. Stat. Soc. Ser. B Stat. Methodol. 70 (2008) 849–911] propose an independent screening framework by ranking the marginal correlations. They showed that the correlation ranking procedure possesses a sure independence screeni...

متن کامل

Sure independence screening and compressed random sensing

Compressed sensing is a very powerful and popular tool for sparse recovery of high dimensional signals. Random sensing matrices are often employed in compressed sensing. In this paper we introduce a new method named aggressive betting using sure independence screening for sparse noiseless signal recovery. The proposal exploits the randomness structure of random sensing matrices to greatly boost...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017